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Abstract

The behavior of jet fuel and its vapor under ditferent sets of conditions was studied
as part of the National Transportation Safety Board's (NTSB's) investigation into the cause
of the TWA Flight 800 accident (DCA96MAQ070; the crash of a 747-131, N93119). An
important goal of this study was to provide technical information about the properties of jet
fuel and its vapor under conditions that might have existed in the Flight 800 center wing
fuel tank at the time of the explosion. Specifically, we wanted to address the question of
fuel flammability under flight conditions at 14,000 feet. Headspace gas chromatography
was used to measure component partial pressures and total vapor pressures for twelve jet
fuel samples (Jet-A, Jet-Al) taken from the center wing tanks of commercial aircraft.
Measurements were made at 32-33.5, 40, and 50°C and at vapor volume-to-liquid volume
(V/L) ratios of 274, 136.5, 26.5, and 1.2 for four of the samples. Measurements were also
made at 40, 50, and 60°C and at V/L ratios of 274 (nearly empty tank; ~3 kg/m3) and 1.2
(half-filled tank; ~300-400 kg/m3) for eight of the samples. A pristine fuel sample
obtained locally (Reno/Tahoe International Airport) from the sump of a refueling truck was
subjected to all of these measurements as a comparison. The four fuel samples were taken
from the center wing tank of flights arriving from Athens, Greece, soon after the Flight
800 incident in 1996. The additional eight samples were taken during Flight 800
simulation tests conducted by the NTSB during July, 1997. Our vapor pressure
measurements indicated differential volatilization (i.e., weathering) of the samples taken
from aircraft fuel tanks, resulting in the depletion of light ends (Cs-Cg; decreasing mole
percent) and the accumulation of the heavier ends (Co-C12; increasing mole percent), as
reflected in the increased average molecular weights and lowered total vapor pressures of
the samples. Despite these compositional changes, calculation of the effect of altitude on
fuel vapor density for V/L = 274 (~3 kg/m3) indicated that at about 14,000 feet, where the
Flight 800 explosion took place, the center wing fuel tank would only have to be at about

50°C (122F) 1o create fuel/air mass ratios (0.048-0.066) and fuel mole fractions (0.010-



0.015) well within the flammability range, where the lower flammability limit would be at

a fuel/air mass ratio and fuel mole fraction of about 0.030 and 0.007, respectively.
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Introduction

As part of the National Transportation Safety Board's (NTSB's) investigation into
the cause of the TW A Flight 800 accident (DCA96MAOQ70; crash of a 747-131, N93119),
the behavior of jet fuel (Jet-A, Jet-Al) and its vapor under different sets of conditions was
studied. A headspace gas chromatographic (HS-GC) method, described in detail in earlier
reports (Woodrow and Seiber, 1988 and 1989), was used to determine component partial
pressures and total vapor pressures of samples of jet fuel representative of the type of fuel
used to fill the center wing tank in the TWA Flight 800 aircraft. Using this method, it was
possible to accurately determine vapor pressures by modeling the jet fuel vapor,
characterized by a complex mixture of hydrocarbons, with just a few n-alkane reference
standards. An important goal of this study was to provide technical information about the
properties of jet fuel and its vapor under conditions that might have existed in the Flight
800 center wing fuel tank at the time of the explosion. Specifically, we wanted to address
the question of fuel flamsmability under flight conditions at 14,000 feet. Itis hoped that this
information will contribute to a better understanding of the nature of the accident.
Procedures

In May, 1997, the NTSB shipped to the University of Nevada (UNR) four liquid
jet fuel samples, three of which were contained in glass bottles sealed with poly-seal screw
caps and one contained in a metal can. These samples were taken during 1996 within a
few months of the Flight 800 incident. During the test flights in July, 1997, eight
additional liquid fuel samples were taken and shipped to UNR in sealed glass bottles.
Sample designations and descriptions are summarized in Table 1. All samples were stored
in a laboratory refrigerator at 1-2°C.

To generate the test flight samples 1-7, fuel was obtained from the outboard wing
tank of a 747 aircraft that arrived from Athens, Greece, and 3,000 pounds was loaded into
a fuel truck. Approximately 800 pounds was off-loaded from the truck to purge the fuel

line on the truck, and 50 gallons was then pumped into the center wing tank of the test 747-



Table 1. Liquid jet fuel samples supplied by the National Transportation Safety Board and

Evergreen for vapor pressure determination and compositional analysis.

Sample Designation Sample Description
1296-683 Flight 881; previously opened for
conductance tests
1296-683 Flight 881; center fuel tank; stored in can
1296-684 Previously opened for conductance tests;
CART 856
1296-684 Taken from sump; CART 856
#1 Test No. 001-01; pre-flight; 7/14/97
#2 Test No. 001-02; Flt 1; pre-flight; 7/15/97
#3 Test No. 001-02; Flt 1; post-flight; "
#4 Test No, 001-02; Flt 2; pre-flight; 7/15/97
#5 Test No. 001-02; Flt 2; post-flight; "
#6 Test No. 001-03; Flt 2; pre-flight; 7/16/97
#7 Test No. 001-03; Flt 2; post-flight;7/17/97
#8 Test No. 001-04; post-flight; 7/17/97




100 series aircraft. This fuel remained on board for flights up through 001-03 (Table 1),
during which time different combinations of three environmental control system (ECS)
packs were operated to cool the crew/passenger cabins. These ECS packs were located
beneath the center wing fuel tank, and temperatures of the packs and of the fuel tank were
monitored. For flight 001-04, the center wing tank was refueled with 6,000 pounds of
JFK fuel and sample 8 was taken after completion of this flight. A brief description of the
flight operations is summarized in Table 2. A much more detailed description of the entire
flight test program is given by Bower (1997).

Into separate chilled 22 mL glass headspace vials (Perkin-Elmer, Norwalk, CT)
were placed 0.08, 0.16, 0.80, and 10 mL of chilled liquid fuel samples, and the vials were
immediately sealed with Teflon®-lined septa in crimped aluminum caps. These volumes
of fuel represented vapor volume-to-liquid volume ratios of 274, 136.5, 26.5, and 1.2,
respectively (i.e., from an almost empty fuel tank to an approximately half-filled tank).
The sealed samples were placed in an HS-40 autosampler and injector (Perkin-Elmer),
where they were thermostated at 30, 40, 50, and 60°C for 15-30 min. After the samples
were thermostated, the HS-40 automatically punctured the septa with a hollow sampling
needle, the vials were pressurized to about 150 kPa, the equilibrated vapor was sampled for
0.01 min, the resulting vapor aliquot was injected onto a 60 m x 0.32 mm (id) DB-1 fused
silica open tubular (FSOT) capillary column (J&W Scientific, Folsom, CA), and the
chromatographed vapor was detected by a flame ionization detector. The column was held
at 100°C for 4 min, after which time it was programmed at 2°/min to 140°C, where it was
held for 1 min. The column carrier gas (helium) flow rate was about 3 mL/min, which
means that for an injection time of .01 min, the volume of vapor sample injected was
about 30 pL (i.e., 3 mL/min x 0.01 min x 1000 pL/mL).

The fuel samples were evaluated using a mixed hydrocarbon standard, which
consisted of an equal volume mix of the normal alkanes pentane (Cs) through dodecane
(C12). Into separate chilled headspace vials were placed 1, 0.5, 0.25, and 0.1 pL of the



Table 2. Test flight operations (July, 1997) showing schedule for liquid and vapor fuel

sampling. Times are EDT.

Liquid Vapor
Rotation Highest | Landing fuel fuel
Date Activity? time altitude, ft time samplingP | sampling®
7/14 Fuel added - -- - - -
to center
wing tank
(CWT)
7/14 Flight 1237 17,500 1910 pre-flight --
(#1)
715 Flight 1211 35,000 1628 pre- and Taxid
post-flight | 10,300 ft
(#2,#3) | 14,100 ft
7/15 TWA 800 2021 19,000 2257 pre- and Taxi®
simulation post-flight | 10,100 ft
flight (#4,#5) | 14,100 ft
7/16 Flight 1044 35,000 1628 -- --
7/16 Flight 1955 17,500 2241 pre- and Taxif
post-flight | 10,000 ft
(#6,#7) | 14,600 ft
T CWT 1043 17,500 1452 post-flight -
refueled (#8)

2 On 7/14, the CWT was fueled with 50 gallons. On 7/17, the CWT was refueled with

6000 pounds of JFK fuel.

b See Table 1.
€ Sagebiel (1997).

d Vapor sampling flight 1.
€ Vapor sampling flight 2.
f Vapor sampling flight 3.

(13




mixed standard and the sealed vials were processed in the same way as for the fuel
samples. These volumes of mixed standard were low enough to allow the hydrocarbons to
completely vaporize, so that eight separate vapor density standard curves could be
generated for each spiking level. Using the gas chromatographic retention times of the
hydrocarbon standards, the fuel vapor chromatograms were divided into eight subsections
(Cs-C12), each of which was approximately centered about the retention time of a
hydrocarbon standard (Figure 1). The peak areas in each subsection were summed and
treated as a single peak in the vapor density regression equations to calculate subsection
vapor densities, which were used to calculate subsection partial pressures. All of the
subsection partial pressures were summed to obtain total vapor pressures for the fuel
samples.

Nine steel canister samples taken of fuel vapors during test flights on 7/15/97 and
7/16/97 (Table 2) were subsampled and analyzed using the same headspace method as for
the liquid fuel samples. The canisters were sampled by allowing the pressure in the
canisters (pressurized with zero air) to briefly flush the headspace vials with fuel vapor.
The vials were immediately sealed and analyzed. Although the test flight samples were
taken at temperatures in the range 42-51°C, the subsamples in sealed headspace vials were
evaluated at an instrument temperature of 40°C. Eight liquid fuel samples, representing
both pre- and post-flight conditions, were taken during the test flights and evaluated at 40,
50, and 60°C and at V/L = 1.2 and 274 using the headspace method.

Some chemical characterization of the jet fuel vapor was performed using gas
chromatography coupled with a mass-selective detector (GC/MSD) (Hewlett-Packard
Company, San Fernando, CA). Using a gas-tight syringe, a 10 pL aliquot of fuel vapor
equilibrated at 50°C was removed from a sealed headspace vial containing liquid fuel and
injected into the GC/MSD system. The injected sample was scanned over a mass range of
40-200, and fragmentation patterns of individual peaks were compared with the computer

library entries to obtain the best matches.
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Results and Discussion

Analysis using headspace sampling and gas chromatography (GC) requires
thermodynamic equilibrium between a condensed phase and its vapor phase in a sealed
container so that aliquots of the vapor can be removed for quantitative GC analysis. For a
liquid fuel mixture in equilibrium with its vapor in a sealed container, GC response of a
component in the vapor is proportional to the vapor density. This means that measuring
the GC response essentially measures the partial pressure if the instrument calibration
factor is known. The calibration factor has a specific value for each component in the fuel
mixture and depends on the characteristics of the detector used. However, the complex jet
fuel mixture can be represented by a relatively small number of n-alkane reference
standards and the properties of the standards can be attributed to the fuel mixture. In other
words, a single n-alkane reference standard can be used to represent a summation of GC
responses (subsection of the fuel GC) for a series of components in the jet fuel vapor.
Then, the partial pressure corresponding to each subsection is obtained from the ideal gas
law and the molecular weight of the n-alkane reference standard for each subsection, No
correction for real gas behavior is necessary since total pressure in the sealed vials remains
below about 304 kPa, above which gases become non-ideal.

The major objective of this study was to use the described method to determine
component partial pressures and total vapor pressures of samples of jet fuel representative
of the type of fuel used to fill the center wing tank in the TW A Flight 800 aircraft. The
analytical instrumentation sampled the sealed vials using a pneumatic-balanced pressure
principle which avoids the disadvantages associated with gas syringes, such as change of
partial pressures of the volatiles due to reduced pressure in the syringe. In a typical
operation, the septum of the thermostated sample was pierced by the hollow sampling
needle, the vial was pressurized to 150 kPa, and then an aliquot of the headspace was

injected onto the FSOT column using the vial pressure as the driving force.
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The volumes of the mixed hydrocarbon standard were low enough to assure
complete vaporization of the C5-C17 hydrocarbons under the test conditions. For the
higher molecular weight hydrocarbons (e.g., dodecane), especially at the lowest test
temperature (32-33.5°C), 0.5 uL and less of the hydrocarbon mix was used to assure
complete vaporization. The resulting vapor densities (g/m3) for the reference hydrocarbons
were correlated with their gas chromatographic peak areas to generate eight individual
calibration curves that were used to calculate subsection partial pressure. These eight
regression equations were linear, with correlation coefficient (r2) values close to unity.
Each subsection summed GC peak area (5-12) was treated as an individual compound and
was used in the appropriate subsection regression equation to calculate a vapor density.
The molecular weights of the subsection reference hydrocarbons were then used to convert
the mass densities to molar densities for use in the ideal gas equation.

Results for the four liquid fuel samples, removed from the center wing tanks of
flights arriving from Athens, Greece, soon after the Flight 800 tragedy, are summarized in
the APPENDIX as Tables A-1 through A-13, along with results for an unweathered fuel
sample from the Reno/Tahoe International Airport. The results for the test flight vapor and
the eight test flight liquid fuel samples are summarized in Tables A-14 through A-20,
along with the results for the Reno fuel. Tables A-1 through A-13 and A-15 through A-20
include subsection and total vapor pressure (mbar), subsection mole percent, and
subsection vapor density (g/m3) for the fuel vapor samples at 32-33.5°C, 40°C, 50, and
60°C and for four vapor volume-to-liquid volume (V/L) ratios (i.e., 274, 136.5, 26.5, 1.2).
Based on the mole percent values, average molecular weights of the fuel vapor were
computed for each V/L ratio at each temperature. Table A-14 lists only the subsection
mole percent and average molecular weight for the test flight vapor samples. Vapor
pressures for these test flight vapor samples were not determined since subsampling of the
steel canisters was done in a way only to transfer enough sample to measure by gas

chromatography for relative comparisons. Because of the warm season (June-August), it
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was not possible for our headspace instrument to equilibrate at 30°C. Furthermore, the
fluctuating ambient temperature allowed us to evaluate only three of the five fuel samples at
the lowest temperature. Finally, Table 3 is a partial listing of the compounds identified in
jet fuel vapor, showing representatives of the chemical classes that make up jet fuel vapor.
The classes included normal alkanes (pentane-dodecane), branched alkanes (2-methyl-
butane through 2,6-dimethyl-nonane), cyclic alkanes (methyl-cyclopentane through 1,2,4-
trimethyl-cyclohexane), olefins (substituted pentene and octene), and aromatics (benzene
derivatives).

The total saturation vapor pressures determined at 32, 40, 50, and 60°C for the
Reno fuel sample compared reasonably well with the published true vapor pressures
(CRC, 1983), estimated from a plot of vapor pressure ys temperature, and with pressure
values determined by professor Joseph Shepherd at the California Institute of Technology
(Shepherd et al., 1997) (Table 4), Correlation of the Reno fuel data in a Clausius-
Clapeyron type equation gave the relationship

£nP = 16.00968-4332/T

where P is pressure (mbar) and T is °K. This compares with
/0P = 15.56471-4191/T
for the Shepherd et al. (1997) data.

In general for all of the liquid fuel samples at all test temperatures, relative vapor
density (mole percent) for subsection carbon number 5 declined by a factor of 4-6 in going
from an approximately half-filled tank (V/L = 1.2) to a nearly empty tank (V/L = 274),
while the relative vapor density for subsection carbon number 9, for example, remained
essentially unchanged (up to ~26% difference), as illustrated in Figure 2A for Reno fuel.
This behavior reflected a change from vapor saturation (V/L = 1.2) to a situation of
undersaturation (V/L = 274), where the heavier vapor components predominated. This is

also reflected in the higher average molecular weight for the undersaturation case compared

to vapor saturation (Tables A-8, A-13, A-19, A-20). However, an increase in fuel



Table 3. Partial list of compounds identified in the vapor of a jet fuel sample.

Branched Cyclic
n-Alkanes Alkanes Alkanes QOlefins Aromatics
pentane 2-me-butane me-cyclopentane 2,3,4-trime-2-
pentene toluene
hexane 2-me-pentane 1,2-dime-
cyclopentane 2,6-dime-2-octene p-xylene
octane 3-me-pentane me-cyclobhexane m-xylene
nonane 3-me-hexane 1,2-dime-
cyclohexane o-xylene
decane 3-me-heptane 1-et-3-me-
cyclopentane propyl benzene
undecane 4-me-octane 1,2,3-trime-
et-cyclohexane benzene
dodecane 2-me-octane 1,2 4-trime-
cyclohexane

2,6-dime-heptane

3-me-octane

3-et-2-me-heptane

3,6-dime-octane

2-me-nonane

2,6-dime-nonane

3-me-decane

10
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Table 4. Comparison of saturation vapor pressure values for Reno fuel with those for fuels

evaluated using other methods.

Saturation Vapor Pressure, mbar
Temperature, °C Reno? CITb CRCC
32 6.33 6.19 -
40 8.21 8.80 8.40
50 13.6 13.3 13.2
60 20.3 19.7 20.5

4 University of Nevada; fuel obtained from the Reno/Tahoe International Airport.
b California Institute of Technology; fuel obtained from LAX Airport (Shepherd et al.,
1997).

¢ Values are for fuel formulated according to general guidelines (CRC, 1983).
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temperature (33.5°C to 60°C) decreased the relative vapor density for subsection carbon
number 5 by only a factor of about 2 (1.8, 2.4) and increased the relative vapor density for
subsection carbon number 9 by only about 10% (8.7%, 10.4%) for both V/L = 1.2 and
274. This is illustrated in Figure 2B for Reno fuel at V/L = 274. So, it appears that a
change in liquid fuel volume by a factor of 125 has a greater effect on vapor composition
than does a change in temperature of close to 30°C.

Compared to the test flight liquid fuel samples, the Reno sample had consistently
higher total vapor pressures at the test temperatures and V/L = 1.2 (i.e., saturation). This
contrast was probably due to differential volatilization (weathering) of the other fuel
samples, which were taken from actual aircraft fuel tanks. The effect of weathering was
dramatically shown by both the liquid and vapor test flight samples, where subsection
mole percent increased for the heavier vapor components as the fuels were allowed to vent
at altitude (Tables A-14 through A-20). This effect for the liquid fuel samples is illustrated
in Figure 3A for test flight samples 1-7 at 50°C (samples 4 and S are pre- and post-flight
800 simulation). Compared to the initial pre-flight sample 1, the other fuel samples
showed substantially less relative vapor density for components <Cg, but greater relative
vapor density for components >Cq. Sample 7, which was taken at the end of a series of
flights at altitude, showed the lowest relative vapor density for components <Cg and the
greatest density for components >Cg compared to the other samples. Furthermore, partial
pressures for sample 7 exceeded the pressures for sample 1 for components >Cg,
indicating some compensation for losses of light ends due to increased mole fraction
(partial pressure) of the heavier ends in the liquid fuel mixture (Figure 3B).

An example of the weathering effect on the vapor samples captured in steel
canisters is shown in Figure 4A for the TWA 800 simulation flight (Table 2). Here we
compare subsection mole percent for our test flight vapor sub-samples from the steel
canisters (Table A-14) with the primary canister samples characterized by DRI (Sagebiel,

1997). Both sets of samples show reasonable agreement with regard to the effects of

AR,
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Figure 3. Comparison of subsection mole percent for test flight samples
at V/L=274 (A) and comparison of subsection partial pressure for test
flight samples at V/L=274 (B). (Table 2; Table A-18)

%



36 |M Taxi-2
{ {B 10,100-2 : A
324 | @ 14,1002 m
5 28 . F2S1 (UNR)
&, 1 |0 F2S2 (UNR) 1
S ul|E mssowwy| o B
2 ' 4 4
g 21 .
S I 7 /1
5 16 10
L ] [ HE
A . 2 H | A A
3 121 B
S - AN
= / Al
' : Al
4 ;;5 A Bl
g 1 1|
' 4 1 Bl
0 - i Bl Bl
5 6 7 8 9 10 11 12
Subsection Carbon Number
40
361 | #4 UNR) B
39 B #5(UNR)
] B Taxi2
g 284 10,100-2
g 1 |0 141002
> 24 4
R=
=
)
8 .
& o P
€ T
(@] : ?:
)
2
‘
4
2
v
4l

5 6 7 8 9 10 11
Subsection Carbon Number

Figure 4. Comparison of test flight vapor canister samples with the
sub-sampled canisters (UNR) (A) and comparison of the test flight
liquid samples (UNR) with the canister samples (B).

15

b



weathering and to subsection mole percent. These vapor samples reflected the behavior of
the test flight liquid samples by showing subsection mole percent increases for the heavier
vapor components as the fuels were allowed to vent at altitude. The shift in vapor
composition to higher molecular weight components after each flight was reflected in an
increased average molecular weight for each vapor sample (Table A-14). The overall
average molecular weight of all nine of our canister sub-samples was 129.1, which
compared well with the estimate by Sagebiel (1997) of 132.4. A comparison of the TWA
800 simulation flight liquid samples 4 and 5 (50°C, V/L =274; Table A-18) with the
canister vapor samples taken during that flight and characterized by DRI is shown in
Figure 4B. The vapor generated by the liquid samples 4 and 5 showed reasonable
agreement with the canister samples in the weathering effect and subsection mole percent.
Despite compositional changes in the fuel due to weathering and handling, will the
fuel still be flammable? To address this question, we used the vapor pressure, molecular
weight, and mass density data for the liquid fuel samples (Tables A-4 through A-13 and
A-15 through A-20) weathered in aircraft fuel tanks to calculate fuel/air mass ratios and
fuel mole fractions in air at sea level and at 14,000 feet for the nominal fuel loading (V/L =
274; ~3 kg/m3). Tables 5 and 6 summarize the calculated results for these fuel samples at
40, 50, and 60°C. Inspection of the data indicates that, compared with a lower
flammability limit of about 0.030 fuel/air mass ratio or .007 mole fraction (Nestor, 1967),
the fuels that were at least at 50°C not only exceeded these values but were well within the
flammability range for the 14,000 foot altitude. The results in Table 5 (test flight liquid fuel
samples) compare well with those of Sagebiel (1997), who computed comparable fuel/air
mass ratios (0.048-0.054) and fuel mole fractions (0.010-0.012) for the 14,000 foot test

flight fuel vapor samples that had temperatures in the range 42-47°C.

16



Table 5. Fuel/air mass ratios and fuel mole fractions for test flight samples at nominal

loading.
Fuel/Air Mass Ratio (V/L = 274)
40°C 50°C 60°C

Sample 0 fid 14 kftb 0 fia 14 kftb 0 fia 14 kftb
1 0.019 0.033 0.035 0.060 0.047 0.081

2 0.015 0.026 0.030 0.052 0.041 0.071

3 0.016 0.028 0.029 0.050 0.042 0.073

4 0.016 0.028 0.031 0.054 0.043 0.074

5 0.016 0.028 0.028 0.048 0.041 0.071

6 0.016 0.028 0.029 0.050 0.045 0.078

7 0.016 0.028 0.028 0.048 0.041 0.071

8 0.022 0.038 0.036 0.062 0.051 0.088
Reno 0.026 0.045 0.044 0.076 0.065 0.112

Fuel Mole Fraction (V/L = 274)
40°C 50°C 60°C

Sample 0 fic 14 kfid 0 i€ 14 kftd 0 fi€ 14 kfid
1 0.004 0.007 0.008 0.014 0.010 0.017

2 0.003 0.005 0.006 0.010 0.009 0.016

3 0.003 0.005 0.006 0.010 0.009 0.016

4 0.003 0.005 0.006 0.010 0.009 0.016

5 0.003 0.005 0.006 0.010 0.008 0.014

6 0.003 0.005 0.006 0.010 0.009 0.016

7 0.003 0.005 0.006 0.010 0.008 0.014

8 0.005 0.009 0.008 0.014 0.011 0.019
Reno 0.006 0.010 0.010 0.017 0.015 0.026

a Atmospheric mass density (dry air): 1127.4 g/m3, 40°C; 1092.4 g/m3, 50°C; 1059.6
g/m3, 60°C.

b Mass ratios at 14 kft were determined by multiplying the ratios at sea level by 1

atm/().578 atm.
C Air molar density: 39.1 moles/m3, 40°C; 37.9 moles/m3, 50°C; 36.7 moles/m3, 60°C.

17

Molar densities were determined from the average molecular weight of air (~28.84 g/mole)
and the mass densities of air at the various temperatures.

d Fuel mole fractions at 14 kft were determined by multiplying the fractions at sea level by
1 atm/(.578 atm.

=0



Table 6. Fuel/air mass ratios and fuel mole fractions for Athens fuel at nominal loading.

Fuel/Air Mass Ratio (V/L = 274)

4°C 50°C
Sample 0 fia 14 kfib 0fid 14 kfib
1296-683 0.025 0.043 0.038 0.066
1296-683 0.021 0.036 0.038 0.066
(center tank)
1296-684 0.020 0.035 0.034 0.059
1296-684 0.018 0.031 0.034 0.059
(sump)
Reno 0.026 0045 1 0044 0076

Fuel Mole Fraction (V/L = 274)

40°C 50°C
Sample 0 fi€ 14 kftd 0 fi€ 14 kfid
1296-683 0.006 0.010 0.009 0.015
1296-683 0.005 0.008 0.009 0.015
(center tank)
1296-684 0.005 0.008 0.008 0.014
1296-684 0.004 0.007 0.008 0.014
(sump)
Reno 0.006 0.010 0.010 0.017

a Atmospheric mass density (dry air): 1127.4 g/m3, 40°C; 1092.4 g/m3, 50°C.
b Mass ratios at 14 kft were determined by multiplying the ratios at sea level by 1

atm/0.578 atm.

C Air molar density: 39.1 moles/m3, 40°C; 37.9 moles/m3, 50°C. Molar densities were
determined from the average molecular weight of air (~28.84 g/mole) and the mass
densities of air at the various temperatures.

d Fuel mole fractions at 14 kft were determined by multiplying the fractions at sea level by

1 atm/0.578 atm.
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Conclusions

1. The effect of weathering on jet fuels (Jet-A, Jet-A1) in the center wing
tank (CWT) was reflected in a change in fuel composition, leading to lower total
vapor pressures and higher average molecular weights. Total vapor pressure of the
fuels declined and average molecular weight increased with weathering when the fuels
were exposed to typical flight conditions in the CWT. The ability of the headspace gas
chromatography (HS-GC) method to measure fuel component properties showed that
these changes in fuel properties were due primarily to changes in fuel composition through
the loss of the more volatile components (<Cg) and enrichment in the less volatile, higher
molecular weight components (>Co).

2. Weathered jet fuel in the CWT still exceeded the lower flammability limit
at 14,000 feet and ~50°C. Although weathered fuel had lower total vapor pressures,
partial pressures of the higher molecular weight components were greater than pressures
for the same components in unweathered fuel under the same conditions. This helped to
partly off-set the effects of losses of the more volatile components by generating enough
vapor mass at ~50°C and ~0.58 atmospheres (14,000 feet) to maintain flammability, as
was indicated by calculations of fuel/air mass ratio and fuel mole fraction in air.

3. Jet fuel in the CWT consisted primarily of alkanes, followed by
substituted aromatics and then olefins. Of the alkanes (normal, branched, and cyclic),
branched alkanes predominated. These classes of compounds and order of occurrence
compare well with analyses reported by others (Sagebiel, 1997, NTSB, 1997). For
example, the Athens fuel, used to fill the CWT of TW A 800, has been reported to consist
of over 80% alkanes, with aromatics amounting to only about 17% by volume and olefins
making up about 0.5% by volume (NTSB, 1997). Although the jet fuels in this study
underwent compositional changes through venting of the CWT at altitude, the weathered

fuels were still characterized by these classes of compounds.
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4. HS-GC is a good and reliable method for modeling the behavior of jet
fuels and their vapors under simulated flight conditions. It was not necessary to know
the precise composition of the jet fuels, but these complex mixtures could be approximated
with n-alkane reference standards whose GC retention times spanned the chromatogram
envelopes of the fuels. Of critical importance is the fact that the HS-GC method will
respond only to hydrocarbons and will be unaffected by non-hydrocarbon constituents,
such as dissolved air, water, etc. This method was validated by obtaining saturation vapor
pressures at several temperatures for unweathered fuel (Reno) that were essentially the
same as pressure values obtained for unweathered fuels using other, unrelated methods
(Shepherd et al., 1997; CRC, 1983). Furthermore, the good comparison between our test
flight liquid and vapor samples and the vapor samples characterized by Sagebiel (1997)
and the good agreement between his and our fuel/air mass ratio and fuel mole fraction
calculations lend further support to the HS-GC method as a reliable alternative to other
methods.
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